
SYBERA Newsletter
Datum: 26.5.2004

SYBERA, Hohenzollernstr. 2, 71088 Holzgerlingen, Tel: 07031-411-781 (Fax: -744608)

X-Realtime Technology

Basic of the SHA software is the realtime subsystem, called XMP-Realtime-Engine. With
the new XMP-Realtime-Engine, SYBERA opens a new dimension to the realtime control
under Windows XP/2000/NT. With support of multiprocessor-platforms, the realtime beha-
viour is clearly improved and the overall-performance was increased. On this occasion, the
new XMP-Realtime-Engine exclusivly reserves a physical or logical processor for the real-
time operation. Besides pure multiprocessor platfroms also the INTEL hyperthreading
technology of the PentiumIV processor is fully supported.

The subsystem is asynchronously coupled with ist on scheduler clock, so that both sys-
tems (SubSystem and OS) are working almost independently. The lock mechanism of
multiprocessor control is administered internally, so that the existing SHA-Interface re-
mains unchanged. Additionally the system supports APIC interrupt control and switches
automatically into the right operating mode

A further implemented mechanis is called "Virtual Code Mapping".
This mechanism allows placing a realtime routine or a interrupt-
service routine inside any application-project. These routines will be
decoded and mapped to the SHA subsystem at runtime.

V
C
M

irtual

ode

apping SY
B
ER

A
Te

ch
no

lo
gy



SYBERA Newsletter
Datum: 26.5.2004

SYBERA, Hohenzollernstr. 2, 71088 Holzgerlingen, Tel: 07031-411-781 (Fax: -744608)

X-Realtime allows non-preemptive realtime multitasking with multiprocessor support. The
system automatically recognizes which platform is present and switches to the correct op-
erating mode. When Hyperthreading is present, a logical processor will be claimed for the
realtime control.

Application

SHA DLL

HAL

SHA Driver

NT-Kernel
und
System-
Services

RTX-Routine()
{ ... }

RTX-Routine()
{ ... }

RTX-Timebase

V
C
M

irtual

ode

apping SY
BE

RA
Te

ch
no

lo
gy

Conventional realtime-subsystems usually work with a synchronized scheduler-
mechanism for realtime subsystem and OS, which usually shows a bad jitter behaviour at
high OS load. The X-Realtime Engine works asynchronously with separated clock sources
that clearly leads to a better jitter behavior and thereby realizes a complete decoupling of
realtime-task to the existing operating system.



SYBERA Newsletter
Datum: 26.5.2004

SYBERA, Hohenzollernstr. 2, 71088 Holzgerlingen, Tel: 07031-411-781 (Fax: -744608)

With the X-Realtime Engine, realtime task cycles are realizable upto 10 µsec (100 KHz)
sampling rate. An integrated watchdog-system controls the realtime task and determines
the remaining task-time. The SHA X-Failsafe-System offers additionally the possibility to
keep a rescue task busy or to proceed a controlled shutdown, even on heavy exception
errors (for example Blue-Screen). With the X-Failsafe-System, for example a robot-arm
can be driven out from a hazard zone and an alarm signal is caused.

The realtime routine has to be equal to a RING0 EXECUTION routine for interrupt control
(see Interrupt Access Module), however without a return value and it‘s not depending on
the system load. With the X-Realtime routine the same programming methods and restric-
tions are valid like on each other RING0 EXECUTION routine.

With the X-Realtime system several tasks can be programmed within an application or
within a device driver and will be automatically mapped to the X-Realtime system layer at
runtime. Every task can be setup with its own scheduling cycle which interacts independ-
ently to any other task cycles. Additionaly each task can given and changed its own priority
dynamically. So several applications with their own realtime tasks can run at once. To-
gether with application task also device drivers can setup their own realtime tasks to run
within the X-Realtime system.



SYBERA Newsletter
Datum: 26.5.2004

SYBERA, Hohenzollernstr. 2, 71088 Holzgerlingen, Tel: 07031-411-781 (Fax: -744608)

Prioritat

Lowest (255)

Highest (0)

T (Realtime Period)

t (Sequence)

n x T (Scheduling Count)

#pragma (SHA_CODE)

#pragma (SHA_CODE)

#pragma (SHA_CODE)

Task1

Task1

Task1

Task1

Task2

Task2

Task2

Task3

Application 1

Application 2

Application 3

Driver


